On adaptive procedures controlling the familywise error rate

نویسندگان

  • Sanat K. Sarkar
  • Wenge Guo
  • Helmut Finner
چکیده

The idea of modifying, and potentially improving, classical multiple testing methods controlling the familywise error rate (FWER) via an estimate of the unknown number of true null hypotheses has been around for a long time without a formal answer to the question whether or not such adaptive methods ultimately maintain the strong control of FWER, until Finner and Gontscharuk (2009) and Guo (2009) have offered some answers. A class of adaptive Bonferroni and S̆id ak methods larger than considered in those papers is introduced, with the FWER control now proved under a weaker distributional setup. Numerical results show that there are versions of adaptive Bonferroni and S̆id ak methods that can perform better under certain positive dependence situations than those previously considered. A different adaptive Holm method and its stepup analog, referred to as an adaptive Hochberg method, are also introduced, and their FWER control is proved asymptotically, as in those papers. These adaptive Holm and Hochberg methods are numerically seen to often outperform the previously considered adaptive Holm method. & 2011 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A note on adaptive Bonferroni and Holm procedures under dependence

Hochberg & Benjamini (1990) first presented adaptive procedures for controlling familywise error rate. However, until now, it has not been proved that these procedures control the familywise error rate. We introduce a simplified version of Hochberg & Benjamini’s adaptive Bonferroni and Holm procedures. Assuming a conditional dependence model, we prove that the former procedure controls the fami...

متن کامل

Per Family or Familywise Type I Error Control: "Eether, Eyether, Neether, Nyther, Let's Call the Whole Thing Off!"

Frane (2015) pointed out the difference between per-family and familywise Type I error control and how different multiple comparison procedures control one method but not necessarily the other. He then went on to demonstrate in the context of a two group multivariate design containing different numbers of dependent variables and correlations between variables how the per-family rate inflates be...

متن کامل

FDR_TEST: A SAS Macro for Calculating New Methods of Error Control in Multiple Hypothesis Testing

The testing of multiple null hypotheses in a single study is a common occurrence in applied research. The problem of Type I error inflation or probability pyramiding in such contexts has been well-known for many years. General procedures for the control of Type I error rates in multiple testing are the Bonferroni procedure and its’ more recent modifications. These procedures partition a desired...

متن کامل

A Rejection Principle for Sequential Tests of Multiple Hypotheses Controlling Familywise Error Rates.

We present a unifying approach to multiple testing procedures for sequential (or streaming) data by giving sufficient conditions for a sequential multiple testing procedure to control the familywise error rate (FWER). Together we call these conditions a "rejection principle for sequential tests," which we then apply to some existing sequential multiple testing procedures to give simplified unde...

متن کامل

On stepwise control of the generalized familywise error rate

A classical approach for dealing with a multiple testing problem is to restrict attention to procedures that control the familywise error rate (FWER), the probability of at least one false rejection. In many applications, one might be willing to tolerate more than one false rejection provided the number of such cases is controlled, thereby increasing the ability of a procedure to detect false n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009